Skip to main content

Dog Whistle for Ronja Circuit Diagram Project


Ronja is the author’s dog, a beagle-mongrel,  who seems increasingly often to need to be  called to heel either with a shout or with a  whistle. And so the idea came about for an  electronic dog whistle that could produce  two alternating high-frequency tones. A  design like this has several advantages over  conventional whistles or calling.
 

Dog Whistle for Ronja Circuit Diagram


Dog Whistle for-Ronja-Circuit-Diagram
Dog Whistle for Ronja Circuit Diagram
 
  • You can continue to carry on a conversation with your friends without having to  stop to whistle or call to your dog.
  • Using high frequencies means that  the whistle sound is barely audible to  (especially older) humans and so is less  annoying to other people than conventional whistles or calls. As is well known,  dogs have rather better hearing than  we do and can hear frequencies of up to  40 kHz.
  • The two alternating pitches mean that the  dog can more easily distinguish it from  other whistles.
 
The dog whistle is constructed from two  standard 555 timer ICs (or a single 556 IC),  both wired as astable multivibrators. The  first 555 oscillates at around 1.5 Hz and modulates the frequency of the second, which thus  switches between two different frequencies  every 0.7 seconds or so. The output of the second 555 is connected to a piezo sounder. If the  volume from the sounder used is insufficient, a small transistor amplifier can be added  between it and the output of the second 555. The circuit draws current only when activated by pressing S1. An optional green  LED indicates that the circuit is functioning.  When S2 is pressed the output frequencies  are reduced, making them more audible to  human ears for test purposes.
 
R1, R2 and C1 set the frequency of astable  multivibrator IC1. Diode D1 ensures that the  output is a symmetrical squarewave, by making C1 charge only via R1 and discharge only  via R2. Turning to IC2, where there is no diode in the  circuit, capacitor C2 is charged via R3 and R4  and discharged only via R4. With C2 = 22nF  the 555 oscillates at about 10 kHz; with S2  pressed, and hence C3 in parallel with C2, this  falls to about 1.8 kHz. Changing C2 to 10 nF  results in an even higher frequency (about  22 kHz), which can only be heard by dogs  and certain other animals. Setting C2 to 15 nF gives an output frequency of about 15 kHz. IC1 modulates the frequency of IC2 via R5. The green LED D2 is connected to the output  of IC1 via a series resistor and thus flashes at  the modulation frequency. The output from the piezo sounder at 10 kHz  (C2 = 22 nF) should be loud enough to verify  by ear. If desired, a more efficient piezo horn  tweeter can be used instead.


Author : Stefan Hoffmann

Comments

Popular posts from this blog

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP ...

Digital Voltmeter Circuit with ICL7107

Description. The circuit given here is of a very useful and accurate digital voltmeter with LED display using the ICL7107 from Intersil. The ICL7107 is a high performance, low power, 3.5 digit analog to digital converter. The IC includes internal circuitry for seven segment decoders, display drivers, reference voltage source and a clock. The power dissipation is less than 10mW and the display stability is very high. The working of this electronic circuit is very simple. The voltage to be measured is converted into a digital equivalent by the ADC inside the IC and then this digital equivalent is decoded to the seven segment format and then displayed. The ADC used in ICL7107 is dual slope type ADC. The process taking place inside our ADC can be stated as follows. For a fixed period of time the voltage to be measured is integrated to obtain a ramp at the output of the integrator. Then a known reference voltage of opposite polarity is applied to the input of the integrator and allowed to r...