Skip to main content

Simple Multicell Charger Circuit Diagram


Using this charger, you can safely charge up to two pieces of Ni-Cd cells or Ni-MH cells. The circuit is compact, inexpensive and easy-to-use.The 230V AC mains is down-converted to 12V AC (at 500 mA) by step-down transformer X1, converted into pulsating DC voltage by diodes D1 and D2, and fed to the battery charger terminals via current-limiting resistor R1 and silicon-controlled rectifier SCR1.

SCR1 is at the heart of the charger. Normally, it conducts due to the gate biasing voltage available through resistor R2 and diode D3, and the battery is in charging mode, which is indicated by LED1. Resistor R2 limits the charging current to a safe value. Charging current of this circuit is about 250 mA.

 Simple Multicell Charger Circuit Diagram


Simple Multicell Charger Circuit Diagram
When the battery reaches full charge, SCR2 conducts to pull down the gate of SCR1. This state is indicated by LED2. Now remove the cells from the charger. Normally, Ni-Cd cell with a rating of 500 mAH will take around 2.5 hours to reach full charge, while the charging time for Ni-MH cell with a rating of 1500 mAH will be around 7 hours. Charging time may vary depending on the settings of the charger and input supply line conditions. 

After construction, a minor adjustment is required for ensuring proper performance: Power on the circuit without cells and adjust VR1 such that LED2 lights up. Now measure voltage across the charger output terminals, which should be around 5V DC. Now insert the two cells into the holder and connect it to the charger output terminals for charging. LED1 instantly lights up to indicate the charging process. If LED1 glows dimly, readjust VR1 for proper glowing of LED1. Now the circuit is ready for use. Use of a small heat-sink is recommended for SCR1.



Sourced by: EFY Author: T.K. Hareendran

Comments

Popular posts from this blog

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP ...

Digital Voltmeter Circuit with ICL7107

Description. The circuit given here is of a very useful and accurate digital voltmeter with LED display using the ICL7107 from Intersil. The ICL7107 is a high performance, low power, 3.5 digit analog to digital converter. The IC includes internal circuitry for seven segment decoders, display drivers, reference voltage source and a clock. The power dissipation is less than 10mW and the display stability is very high. The working of this electronic circuit is very simple. The voltage to be measured is converted into a digital equivalent by the ADC inside the IC and then this digital equivalent is decoded to the seven segment format and then displayed. The ADC used in ICL7107 is dual slope type ADC. The process taking place inside our ADC can be stated as follows. For a fixed period of time the voltage to be measured is integrated to obtain a ramp at the output of the integrator. Then a known reference voltage of opposite polarity is applied to the input of the integrator and allowed to r...