Skip to main content

2500W Phase Control


This circuit controls resistive and inductive loads up to 2,500W. It's main functional device is an integrated phase control circuit - Siemens TLE3103. It contains its own power supply, a zero voltage crossing detector circuit and a logic driver. An additional feature is the low voltage input to enable/disable triac firing enabling/disabling the logic driver. The function is as follows: pin13 TLE3103 open (floating), trigger output active, tied to ground trigger output disabled.

2500W Phase Control  Circuit diagram


An UP and a DOWN button control a 32-step digital potentiometer (IC2, AD5228) via the debouncer IC1 (MAX6817). The potentiometer has a power on reset pin which might be tied to ground causing the potentiometer to start at midscale, or to VCC causing it to start at zero scale. The desired function is selectable using jumper JP1. The triac (capable of driving 40A loads) is a bit overkill for the desired power but the BTA41 has an isolated body and therefore handling of the board under voltage is less dangerous as it is with phase on the package. The circuit uses a 68μH inductance, but this might be replaced with a 100 resistor, then replacing the inductance C5 should have a value of 47nF.

Comments

Popular posts from this blog

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP connectio

PIC16F887 877 programming in C Tutorial 5 LCD Interfacing

LCD Interfacing: In this tutorial i will show you how to interface 16x2 LCD with micro-controller. 16x2 means there are two rows and each row contain maximum 16 characters.  For more detail refer to the LCD datasheet, which you are using. Basic Connection: Applies 5v to pin 2 and gnd to pins 1 & 5. Use variable resistor at pin 3 to set contrast. Pins 7 to 14 are the data pins,, used to send/rec data. Pin 6 is of enable; every time when you write to lcd you should have to give high to low, to this pin. pin 4 is register select pin use to give commands like clear, home etc.   In this tutorial i will interface lcd in 4-bit instead of 8-bit, so we only required four data pins. Code: Lets write a code that will display the motor status and its direction; it will be fun!!!! Requirements: Design a motor controller circuit using l298 and display its status on lcd. LCD is connected to portb and motor controller circuit is at portd. Required two switches to change motor direction; if both ar

12V to 30V DC to DC Converter circuit Diagram

 12V to +/- 30V DC to DC Converter circuit Diagram This is a DC to DC converter for car power amplifier. 12V input generates +30V and -30V output for preamp or power amplifiers. Circuit uses SG3525 IC, Mosfets and switching power supply.