Skip to main content

Simple Pencell Charge Indicator Circuit Diagram


Small-size AA cells and button cells used in electronic devices providing a terminal voltage of 1.5V are normally rated at 500 mAh. As the cells discharge, their internal impedance increases to form a potential divider along with the load and the battery terminal voltage reduces. This, in turn, reduces the performance of the gadget and we are forced to replace the battery with a new one. But the same battery can be used again in some other application that requires less current.

Here’s a simple tester for quick checking of discharged pencells and button cells before throwing them away. The tester detects the holding charge of the battery and the terminal voltage to indicate whether the battery is suitable for a particular gadget or not.

A 9V battery can power the circuit with sufficient voltage and current. When you close switch S1, it provides stable 6V DC to the circuit.

Simple Pencell Charge Indicator Circuit Diagram

Simple Pencell Charge Indicator Circuit Diagram


The circuit uses op-amp CA3140 (IC1) as a voltage comparator. It can sense even a slight voltage variation between its inverting and non-inverting inputs. The non-inverting input (pin 3) of IC1 is supplied with a voltage obtained from the battery under test, while its inverting input pin 2 is provided with a reference voltage of 1.4V derived by resistor R4 and series combination of diodes D1 and D2. Resistors R1 and R2 provide a loading of 10 mA and 100 mA, respectively, for checking the charge capacity.

When a new battery is connected to the test terminals, the non-inverting input of IC1 gets 1.5V, which exceeds the voltage of the inverting input and the output of IC1 goes high. This high output provides forward bias to transistor T1 through resistor R4 and it conducts to light up the green half of the bicolour LED (LED1). Simultaneously, the base of transistor T2 is pulled down and it turns off and the red half of bicolour LED1 remains off.

When a partially discharged battery (with a terminal voltage of less than 1.4 V) is connected to the test terminals, the output of IC1 goes low to switch off transistor T1. This allows transistor T2 to forward bias by taking bias voltage through resistor R5 and the red LED within bicolour LED1 glows.

Slide switch S2 is used to check whether the battery is holding sufficient current to drive a load of 10 mA or 100 mA. If the discharged battery holds more than 100mA current, the green LED within bicolour LED1 glows, indicating that the battery can be used again in a low-drain circuit.

The circuit can be easily constructed on a perforated board using readily available components. Enclose it in a small case with probes or battery holder for testing.

Sourced by: EFY Author:  D. Mohan Kumar

Comments

Popular posts from this blog

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP ...

Digital Voltmeter Circuit with ICL7107

Description. The circuit given here is of a very useful and accurate digital voltmeter with LED display using the ICL7107 from Intersil. The ICL7107 is a high performance, low power, 3.5 digit analog to digital converter. The IC includes internal circuitry for seven segment decoders, display drivers, reference voltage source and a clock. The power dissipation is less than 10mW and the display stability is very high. The working of this electronic circuit is very simple. The voltage to be measured is converted into a digital equivalent by the ADC inside the IC and then this digital equivalent is decoded to the seven segment format and then displayed. The ADC used in ICL7107 is dual slope type ADC. The process taking place inside our ADC can be stated as follows. For a fixed period of time the voltage to be measured is integrated to obtain a ramp at the output of the integrator. Then a known reference voltage of opposite polarity is applied to the input of the integrator and allowed to r...