Skip to main content

Temperature Sensor LM35 PIC16F877A


Here's one temperature sensor (thermometer) circuit that you can easily build. It uses the popular PIC 16F877A microcontroller. The temperature sensor is LM35. The LM35 outputs an analog voltage proportional to the temperature. The output from the LM35 is 0.1V/'C. So, when temperature sensed is 61'C, the output voltage is 0.61V. This analog voltage is read by the PIC and processed to display the corresponding temperature value on the LCD.

The temperature range for this circuit is 0'C to 150'C.

The analog to digital conversion is done by the PIC ADC module. In the code, I've used the mikroC library function for ADC. You can view the library file here: http://www.mikroe.com/download/eng/documents/compilers/mikroc/pro/pic/help/adc_library.htm

However, you should have a knowledge of how the ADC module works and how to use it. I had written a tutorial on modalities of operation of the PIC 16F877A ADC. You can find the tutorial here:
http://www.blogspot.com/2016/03/modalities-of-using-adc-module-of.html

For LCD interfacing, I used the mikroC LCD library. You can view the library file here: http://www.mikroe.com/download/eng/documents/compilers/mikroc/pro/pic/help/lcd_library.htm


Here is the code for PIC16F877A:
(You can download the source file from: https://rapidshare.com/files/3044512089/LM35PIC16F877A.c)
--------------------------------------------------------------------------------------------------------------
//Programmer: Syed Tahmid Mahbub
//Compiler: mikroC PRO for PIC v4.60
//Target PIC: PIC16F877A
--------------------------------------------------------------------------------------------------------------
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;

unsigned long ADRead;
unsigned int vDisp[3];
unsigned char Display[7];
    
void main() {

     PORTA = 0;
     TRISA = 0X01;
     PORTB = 0;
     TRISB = 0;
     LCD_Init();
     LCD_Cmd(_LCD_CURSOR_OFF);
     LCD_Cmd(_LCD_CLEAR);
     LCD_Out(1, 1, "Temp:");
     //Display = "+125 'C";
     Display[4] = 39; //'
     Display[5]= 'C';
     ADCON1 = 0x0E;
     ADC_Init();
     while (1){
           ADRead = (ADC_Get_Sample(0) * 500) >> 10;
           vDisp[0] = ADRead / 100;
           vDisp[1] = (ADRead / 10) % 10;
           vDisp[2] = ADRead % 10;
           Display[1] = vDisp[0] + 48;
           Display[2] = vDisp[1] + 48;
           Display[3] = vDisp[2] + 48;
           LCD_Chr(1, 8, Display[0]);
           LCD_Chr(1, 9, Display[1]);
           LCD_Chr(1, 10, Display[2]);
           LCD_Chr(1, 11, Display[3]);
           LCD_Chr(1, 12, Display[4]);
           LCD_Chr(1, 13, Display[5]);
           //LCD_Out(1, 8, ); // 'Show temperature
           delay_ms(200); //200ms delay for waiting
     }
}
--------------------------------------------------------------------------------------------------------------

Reference documents:
LM35 datasheet: www.ti.com/lit/ds/symlink/lm35.pdf
PIC16F877A datasheet: ww1.microchip.com/downloads/en/devicedoc/39582b.pdf
Modalities of Using the ADC module of the PIC16F877A: http://www.blogspot.com/2016/03/modalities-of-using-adc-module-of.html
mikroC LCD library: http://www.mikroe.com/download/eng/documents/compilers/mikroc/pro/pic/help/lcd_library.htm
mikroC ADC library: http://www.mikroe.com/download/eng/documents/compilers/mikroc/pro/pic/help/adc_library.htm

Comments

Popular posts from this blog

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP ...

Digital Voltmeter Circuit with ICL7107

Description. The circuit given here is of a very useful and accurate digital voltmeter with LED display using the ICL7107 from Intersil. The ICL7107 is a high performance, low power, 3.5 digit analog to digital converter. The IC includes internal circuitry for seven segment decoders, display drivers, reference voltage source and a clock. The power dissipation is less than 10mW and the display stability is very high. The working of this electronic circuit is very simple. The voltage to be measured is converted into a digital equivalent by the ADC inside the IC and then this digital equivalent is decoded to the seven segment format and then displayed. The ADC used in ICL7107 is dual slope type ADC. The process taking place inside our ADC can be stated as follows. For a fixed period of time the voltage to be measured is integrated to obtain a ramp at the output of the integrator. Then a known reference voltage of opposite polarity is applied to the input of the integrator and allowed to r...