Skip to main content

Build a Inexpensive Car Protection Unit Circuit Diagram


This is a simple Inexpensive car Protection Unit Circuit Diagram. This circuit to protect car stereo, etc from pilferage that costs less and requires no adjustments in the car but a good car cover. Place the circuit at your bedside and bring the two wires from the unit to the car (parked outside your home) and connect one wire-end to the cover and the other to the ground, with both wire-ends shorted by some weight such as a brick. So outwardly the mechanism is not visible.

Circuit of car protection unit with alarm

If someone tries to remove the cover, the alarm of the circuit starts sounding to alert you. The alarm can be switched off by resetting it using switch S1.

The car protection circuit comprises two timer ICs: one for the alarm circuit (see IC2 in Fig.1) and the other to indicate that the battery has taken over as the power source (see IC3 in Fig. 2). Normally, the protector operates off AC mains and the battery takes over only when mains fail. As the battery current is not high, the battery will last long.

As long as the two wires remain shorted, transistor T1 remains cut off. When shorting is removed, transistor T1 gets forward biased and its collector voltage drops to trigger IC2 and the piezobuzzer starts sounding.


battery-takeover indicator
 battery-takeover indicator

If mains fails, the battery-takeover indicator (shown in Fig. 2 and connected to points A, B and C in Fig. 1) immediately gets triggered at pin 2 of IC3. Its high output activates the battery-operation alarm for a couple of seconds. IC1 draws power from the battery to activate the protection unit.

After setting up the unit properly and shorting both the wires, press test switch S2. If there is no fault in the circuit, the alarm will sound. Now release test switch S2 and momentarily press reset switch S1 to switch off the alarm.



Sourced By:  EFY Author : M. Venkateswaran and T.E. Parthasarathy

Comments

Popular posts from this blog

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP ...

Digital Voltmeter Circuit with ICL7107

Description. The circuit given here is of a very useful and accurate digital voltmeter with LED display using the ICL7107 from Intersil. The ICL7107 is a high performance, low power, 3.5 digit analog to digital converter. The IC includes internal circuitry for seven segment decoders, display drivers, reference voltage source and a clock. The power dissipation is less than 10mW and the display stability is very high. The working of this electronic circuit is very simple. The voltage to be measured is converted into a digital equivalent by the ADC inside the IC and then this digital equivalent is decoded to the seven segment format and then displayed. The ADC used in ICL7107 is dual slope type ADC. The process taking place inside our ADC can be stated as follows. For a fixed period of time the voltage to be measured is integrated to obtain a ramp at the output of the integrator. Then a known reference voltage of opposite polarity is applied to the input of the integrator and allowed to r...