Skip to main content

Alarm Control Keypad Circuit Diagram


The IC is a quad 2 input “AND” gate, a CMOS 4081. These gatesonly produce a HIGH output, when BOTH the inputs are HIGH. Whenthe key wired to `E` is pressed, current through R1 and D1switches Q5 on. The relay energises; and Q5 is `latched on` byR8. Thus, the Alarm is set by pressing a single key, say one ofthe tw1o non-numeric symbols.The alarm will switch off when the 4 keys connected to“A,B,C,D” are pushed in the right order. The circuit worksbecause each gate `Stands` upon its predecessor.If any key otherthan the correct key is pushed, then gate 1 is knocked out of thestack, and the code entry fails. 

Pin 1 is held high by R4. This`Enables` gate 1; and when button `A` is pressed, theoutput at pin 3 will go high. This output does tw1o jobs.It locksitself `ON` through R2 and it `Enables` gate 2, by taking pin 5,high. Now, if `B` is pressed, the output of gate 2, at pin 4will go high. This output does tw1o jobs. It locks itself `ON`through R3 and it `Enables` gate 3 by taking pin 12 high.Now, if `C` is pressed, the output of gate 3 will lock itself`ON` through R5 and, by taking pin 8 high, `Enable` gate 4.Pressing `D` causes gate 4 to do the same thing; only this timeits output, at pin 10, turns Q4 `ON`. 

This takes the base of Q5to ground, switching it off and letting the relay drop out. Thisswitches the alarm off.Any keys not connected to `A B C D E` are wired to the base ofQ1. Whenever `E` or one of these other keys is pressed, pin 1 istaken low and the circuit is reset. In addition, if `C` or `D`is pressed out of sequence, then Q2 or Q3 will take pin 1 low andthe circuit will reset. Thus nothing happens until `A` ispressed. Then if any key other than `B` is pressed, the circuitwill reset.Similarly, after `B`, if any key other than `C` is pressed,the circuit will reset. The same reasoning also applies to `D`.The Keypad needs to be the kind with a common terminal and aseparate connection to each key. On a 12 key pad, look for 13terminals. The matrix type with 7 terminals will NOT do. 

Wire thecommon to R1 and your chosen code to `A B C D`. Wire `E` to thekey you want to use to switch the alarm on. All the rest go tothe base of Q1.The diagram should give you a rough guide to the layout of thecomponents, if you are using a strip board. The code you choosecan include the non-numeric symbols. In fact, you do not have touse a numeric keypad at all, or you could make your own keypad.I haven`t calculated the number of combinations of codesavailable, but it should be in excess of 10 000 with a 12 keypad; and, after all, any potential intruder will be ignorant ofthe circuit`s limitations. Of Course, if you must have a moresecure code, I can think of no reason why you shouldn`t addanother 4081 and continue the process of enabling subsequentgates. Or you could simply use a bigger keypad with more “WRONG”keys.Any small audio transistors should do. 

The 27k resistors couldbe replaced with values up to 100k. And the only requirementsfor the 4k7 resistors is that they protect the junctions whileproviding enough current to turn the transistors fully on.Capacitors (C1 C2 C3 C4 C5) are there to slow response timeand overcome any contact bounce. They are probably unnecessary.

Alarm Control Keypad Circuit Diagram

Alarm Control Keypad Circuit Diagram


Comments

Popular posts from this blog

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP ...

Digital Voltmeter Circuit with ICL7107

Description. The circuit given here is of a very useful and accurate digital voltmeter with LED display using the ICL7107 from Intersil. The ICL7107 is a high performance, low power, 3.5 digit analog to digital converter. The IC includes internal circuitry for seven segment decoders, display drivers, reference voltage source and a clock. The power dissipation is less than 10mW and the display stability is very high. The working of this electronic circuit is very simple. The voltage to be measured is converted into a digital equivalent by the ADC inside the IC and then this digital equivalent is decoded to the seven segment format and then displayed. The ADC used in ICL7107 is dual slope type ADC. The process taking place inside our ADC can be stated as follows. For a fixed period of time the voltage to be measured is integrated to obtain a ramp at the output of the integrator. Then a known reference voltage of opposite polarity is applied to the input of the integrator and allowed to r...