Skip to main content

IC LM35 Temperature Sensor Characteristics


LM 35 temperature sensor IC is a IC chip production Natioanal Semiconductor which serves to determine the temperature of an object or space in the form of electric scale, or can also be defined as an electronic component that is used to change the temperature changes are accepted in the electrical wholesale changes. LM35 temperature sensor IC temperature change can change a change in voltage at the output. LM35 temperature sensor IC requires +5 volts DC source voltage and DC current consumption of 60 mA in operation. Physical form LM 35 temperature sensor is an IC chip with packaging that varies, in general packaging LM35 temperature sensor is packaged TO-92 as shown in the figure below.

IC LM35 Temperature Sensor Characteristics 



Simple IC LM35 Temperature Sensor Characteristics


From the picture above it can be seen that the temperature sensor IC LM35 basically have 3 pin that serves as a source of supply voltage of +5 volts DC, as a result of sensing the output pin in the form of a change in the DC voltage and Vout pin to Ground.

IC LM35 temperature sensor characteristics are:

  •     Temperature sensitivity, with linear scaling factor between voltage and temperature 10 mVolt / º C, so it can be calibrated directly in centigrade.
  •     Have the accuracy or the accuracy of the calibration is 0.5 º C at 25 º C.
  •     Has a maximum operating temperature range between -55 º C to +150 º C. Working at a voltage of 4 to 30 volts.
  •     Has current low at less than 60 mA.
  •     Have a low self-heating (low-heating) of less than 0.1 º C in still air.
  •     Has a low output impedance is 0.1 W for 1 mA load.
  •     have Nonlinearities only about ± ¼ º C.


Comments

Popular posts from this blog

Mantis 9 1 CNC Mill

The Mantis 9.1 design is a radical departure from version 8 and earlier. Most notably, the part count has been almost halved! The current design has 13 parts, all of which can be made with a handsaw and a drill press. Also, I’ve traded away my alignment free exactly-constrained design for extra stiffness. Several unsuccessful attempts to eradicate the last of the slop in the Z axis on version 8 lead me back to the world of over-constrained parallel rods. My previous attempts at an over-constrained design (versions 1-5) all failed because I was unable to make the rods sufficiently parallel to avoid jamming. What to do? [ ]

25 Watt Audio Amplifier Circuits Diagram

25 Watt Audio Amplifier Circuits Diagram Parts: R1 ,R4 _________47K   1/4W Resistors R2____________ 4K7   1 /4W Resistor R3____________ 1K5   1 /4W Resistor R5__________390R    1/4W Resistor R6__________470R    1/4W Resistor R7___________33K    1/4W Resistor R8__________150K    1/4W Resistor R9___________15K    1/4W Resistor R10__________27R    1/4W Resistor R11_________500R    1/2W Trimmer Cermet R12 ,R13,R16 __10R    1/4W Resistors R14 ,R15 _____220R    1/4W Resistors R17___________8R2     2W Resistor R18____________R22    4W Resistor ( wirewound )   C1___________ 470nF   63V Polyester Capacitor C2___________ 330pF   63V Polystyrene Capacitor C3 ,C5 ________470µF   63V Electrolytic Capacitors C4 ,C6,C8,C11 _100nF   63V Polyester Capacitors C7___________100µ F   25V Electrolytic Capacitor C9____________ 10pF   63V Polys...

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...