Skip to main content

Luminescent Generator


When spun rapidly between the fingers, a bipolar stepper motor will generate around 10VAC. If this is stepped up with a small 240V to 6-0-6V transformer in reverse (with series connected secondaries), a small bipolar stepper motor is capable of powering a standard 5cm by 6cm luminescent sheet at full brightness. These are designed to be powered from 20V to 200VAC (typically 115VAC), producing 1.5 candelas of light - which will dimly light the average room, or adequately light a camp table. They are manufactured by Seikosha (RS Components Cat. 267-8726).

Circuit diagram:

luminescent-generator-circuit diagram

Luminescent Generator Circuit Diagram

The transformer should be a small one (around 100mA or so), otherwise efficiency is compromised. The wires of the motor's two phases are usually paired white & yellow and red & blue. Just one of these phases is employed in the circuit. If a small bipolar stepper motor from a discarded 3.5-inch disk drive is used, the Luminescent Generator may be built into a very small enclosure. To sustain rapid, smooth spinning of the motor, a geared handle may be added.

Author: Thomas Scarborough - Copyright: Silicon Chip


Comments

Popular posts from this blog

Mantis 9 1 CNC Mill

The Mantis 9.1 design is a radical departure from version 8 and earlier. Most notably, the part count has been almost halved! The current design has 13 parts, all of which can be made with a handsaw and a drill press. Also, I’ve traded away my alignment free exactly-constrained design for extra stiffness. Several unsuccessful attempts to eradicate the last of the slop in the Z axis on version 8 lead me back to the world of over-constrained parallel rods. My previous attempts at an over-constrained design (versions 1-5) all failed because I was unable to make the rods sufficiently parallel to avoid jamming. What to do? [ ]

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP ...