Skip to main content

Power and Energy


What is power?

Power is the rate of using or supplying energy:
Power = Energy     Power is measured in watts (W)
Energy is measured in joules (J)
Time is measured in seconds (s)
 Time

Electronics is mostly concerned with small quantities of power, so the power is often measured in milliwatts (mW), 1mW = 0.001W. For example an LED uses about 40mW and a bleeper uses about 100mW, even a lamp such as a torch bulb only uses about 1W.
The typical power used in mains electrical circuits is much larger, so this power may be measured in kilowatts (kW), 1kW = 1000W. For example a typical mains lamp uses 60W and a kettle uses about 3kW.

Calculating power using current and voltage

There are three ways of writing an equation for power, current and voltage:
Power = Current × Voltage   so   P = I × V or 
I = P
 V
 or 
V = P
 I
where:P = power in watts (W)
V = voltage in volts (V)
I  = current in amps (A)
or:P = power in milliwatts (mW)
V = voltage in volts (V)
I  = current in milliamps (mA)

P I    V 
You can use the PIV triangle to help you remember the three versions of the power equations. Use it in the same way as the Ohm's Law triangle. For most electronic circuits the amp is too large, so we often measure current in milliamps (mA) and power in milliwatts (mW). 1mA = 0.001A and 1mW = 0.001W. 

Calculating power using resistance and current or voltage

Using Ohm's Law V = I × R   we can convert P = I × V to:
P I²   R         P    R 
PI²R triangle       V²PR triangle
P = I² × R
or
P = V² / R
where:P = power in watts (W)
I  = current in amps (A)
R = resistance in ohms (ohm)
V = voltage in volts (V)


Wasted power and overheating

Normally electric power is useful, making a lamp light or a motor turn for example. However, electrical energy is converted to heat whenever a current flows through a resistance and this can be a problem if it makes a device or wire overheat. In electronics the effect is usually negligible, but if the resistance is low (a wire or low value resistor for example) the current can be sufficiently large to cause a problem.
You can see from the equation P = I² × R that for a given resistance the power depends on the current squared, so doubling the current will give 4 times the power.
Resistors are rated by the maximum power they can have developed in them without damage, but power ratings are rarely quoted in parts lists because the standard ratings of 0.25W or 0.5W are suitable for most circuits. Further information is available on the Resistors page.
Wires and cables are rated by the maximum current they can pass without overheating. They have a very low resistance so the maximum current is relatively large. For further information about current rating please see the Connectors and Cables page.

Energy

The amount of energy used (or supplied) depends on the power and the time for which it is used:
Energy = Power × Time

A low power device operating for a long time can use more energy than a high power device operating for a short time. For example:
  • A 60W lamp switched on for 8 hours uses 60W × 8 × 3600s = 1728kJ.
  • A 3kW kettle switched on for 5 minutes uses 3000W × 5 × 60s = 900kJ.
The standard unit for energy is the joule (J), but 1J is a very small amount of energy for mains electricity so kilojoule (kJ) or megajoule (MJ) are sometimes used in scientific work. In the home we measure electrical energy in kilowatt-hours (kWh). 1kWh is the energy used by a 1kW power appliance when it is switched on for 1 hour:
1kWh = 1kW × 1 hour = 1000W × 3600s = 3.6MJ
For example:
  • A 60W lamp switched on for 8 hours uses 0.06kW × 8 = 0.48kWh.
  • A 3kW kettle switched on for 5 minutes uses 3kW × 5/60 = 0.25kWh.

Comments

Popular posts from this blog

Mantis 9 1 CNC Mill

The Mantis 9.1 design is a radical departure from version 8 and earlier. Most notably, the part count has been almost halved! The current design has 13 parts, all of which can be made with a handsaw and a drill press. Also, I’ve traded away my alignment free exactly-constrained design for extra stiffness. Several unsuccessful attempts to eradicate the last of the slop in the Z axis on version 8 lead me back to the world of over-constrained parallel rods. My previous attempts at an over-constrained design (versions 1-5) all failed because I was unable to make the rods sufficiently parallel to avoid jamming. What to do? [ ]

25 Watt Audio Amplifier Circuits Diagram

25 Watt Audio Amplifier Circuits Diagram Parts: R1 ,R4 _________47K   1/4W Resistors R2____________ 4K7   1 /4W Resistor R3____________ 1K5   1 /4W Resistor R5__________390R    1/4W Resistor R6__________470R    1/4W Resistor R7___________33K    1/4W Resistor R8__________150K    1/4W Resistor R9___________15K    1/4W Resistor R10__________27R    1/4W Resistor R11_________500R    1/2W Trimmer Cermet R12 ,R13,R16 __10R    1/4W Resistors R14 ,R15 _____220R    1/4W Resistors R17___________8R2     2W Resistor R18____________R22    4W Resistor ( wirewound )   C1___________ 470nF   63V Polyester Capacitor C2___________ 330pF   63V Polystyrene Capacitor C3 ,C5 ________470µF   63V Electrolytic Capacitors C4 ,C6,C8,C11 _100nF   63V Polyester Capacitors C7___________100µ F   25V Electrolytic Capacitor C9____________ 10pF   63V Polys...

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...