Skip to main content

Sensitive Optical Burglar Alarm using with 555 timer IC


This is a very simple and low-cost ELECTRONIC CIRCUIT PROJECT of  sensitive optical burglar alarm circuit diagram. This sensitive optical burglar alarm uses two 555 timer ICs (IC1 and IC2). Both the ICs are wired as astable multivibrators. The first astable multivibrator built around IC1 produces low frequencies, while the second astable multivibrator built around IC2 produces audio frequencies.

Sensitive Optical Burglar Alarm Diagram:

 Sensitive Optical Burglar Alarm

General-purpose Darlington photo-transistor T1 is used as the light sensor. To increase the sensitivity of the circuit, NPN transistor T2 is used.

Place phototransistor T1 where light falls on it continuously. Phototransistor T1 receives light to provide base voltage to transistor T2. As a result, transistor T2 conduct to keep reset pin 4 of IC1 at low level. This disables the first multivibrator (IC1) and hence the second multivibrator (IC2) also remains reset so the alarm (LS1) does not sound.


When light falling on Darlington phototransistor T1 is obstructed, transistor T2 stops conducting and reset pin 4 of IC1 goes high. This enables the first multivibrator (IC1) and hence also the second multivibrator (IC2). As a result, a beep tone is heard from speaker LS1. The beep rate can be varied by using preset VR1, while the output frequency of IC2 can be varied by using another preset VR2.

This circuit works off a simple 6V-12V DC power supply.

PARTS LIST:

Resistors (all ¼-watt, ± 5% Carbon unless stated otherwise)
R1, R5 = 1 KΩ
R2 = 100 KΩ
R3 = 4.7 KΩ
R4 = 10 KΩ
VR1 = 1 MΩ
VR2 = 100 KΩ
Capacitors
C1 = 1 µF/16V
C2 = 0.01 µF
C3 = 0.047 µF
C4 = 0.01 µF
C5 = 47 µF/25V
Semiconductors
IC1, IC2 = NE555



Comments

Popular posts from this blog

Mantis 9 1 CNC Mill

The Mantis 9.1 design is a radical departure from version 8 and earlier. Most notably, the part count has been almost halved! The current design has 13 parts, all of which can be made with a handsaw and a drill press. Also, I’ve traded away my alignment free exactly-constrained design for extra stiffness. Several unsuccessful attempts to eradicate the last of the slop in the Z axis on version 8 lead me back to the world of over-constrained parallel rods. My previous attempts at an over-constrained design (versions 1-5) all failed because I was unable to make the rods sufficiently parallel to avoid jamming. What to do? [ ]

25 Watt Audio Amplifier Circuits Diagram

25 Watt Audio Amplifier Circuits Diagram Parts: R1 ,R4 _________47K   1/4W Resistors R2____________ 4K7   1 /4W Resistor R3____________ 1K5   1 /4W Resistor R5__________390R    1/4W Resistor R6__________470R    1/4W Resistor R7___________33K    1/4W Resistor R8__________150K    1/4W Resistor R9___________15K    1/4W Resistor R10__________27R    1/4W Resistor R11_________500R    1/2W Trimmer Cermet R12 ,R13,R16 __10R    1/4W Resistors R14 ,R15 _____220R    1/4W Resistors R17___________8R2     2W Resistor R18____________R22    4W Resistor ( wirewound )   C1___________ 470nF   63V Polyester Capacitor C2___________ 330pF   63V Polystyrene Capacitor C3 ,C5 ________470µF   63V Electrolytic Capacitors C4 ,C6,C8,C11 _100nF   63V Polyester Capacitors C7___________100µ F   25V Electrolytic Capacitor C9____________ 10pF   63V Polys...

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...