Skip to main content

Snail Mail Detector Circuit Diagram


Since his letter-box is outdoors  and quite some way from the  house, the author was looking  for a simple means of knowing if  the postman had been without  having to go outside (contrary  to popular belief, the weather  isn’t always fine in the South of  France). Circuits for this kind of  ‘remote detection’ come up regularly, but always involve running cables between the letter- box and the detection circuit in  the house. Seeking to avoid running any extra cables, the author  had the idea of using the existing cables going to the doorbell,  conveniently located adjacent to  his letter-box.
 Snail Mail Detector1
The letter-box has two doors:  one  on  the  street  side  for  the  postman, and one on the gar-den side for collecting the post.  A  micro switch  is  fitted  to  the  street-side door, to light an indicator in the house showing that  the postman has been. A second  micro switch is fitted to the door  on the garden side, to turn off  the indicator once the post has  been collected. The only difficulty then remains to connect  these detectors to a remote circuit in the house that remembers  whether  the  postman’s  been or not.
Snail Mail Detector2
 
The idea was to use the alternating half-cycles of the AC signal  on the cable going to the door-bell  to  transmit  the  information, according to the following logic:
  • Both  half-cycles  present: no change in the status of the mail detector.
  • An interruption (even brief) of one half-cycle: indicator lights permanently.
  • An interruption (even brief) of the other half-cycle: the indicator goes out.
Note that the signal is tapped off  across the doorbell coil via R6  and the pair of diodes connected  in inverse-parallel (to limit the  signal,  par ticularly  when  the  bell is rung). The signal is then  filtered by R2/C1, before being  used by IC1, which is wired as a  comparator with hysteresis. The  trigger threshold is adjusted by  P1, using a pair of inverse parallel diodes as a voltage reference  (positive or negative according  to the output state):
 
For the detection to work, there  has to be continuity in the bell-push circuit this is generally  ensured by the little lamp illuminating the bell-push. Resistor R1  is added just in case the lamp is  blown or not present. To keep things simple, the circuit is powered directly from the  doorbell transformer itself (230 V  / 8 V). The author managed to fit  the little circuit within the door-bell unit, with the LED poking  through a hole in the casing so  it is readily visible in the hall of  his house. 


Source by Streampowers

Comments

Popular posts from this blog

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP ...

Digital Voltmeter Circuit with ICL7107

Description. The circuit given here is of a very useful and accurate digital voltmeter with LED display using the ICL7107 from Intersil. The ICL7107 is a high performance, low power, 3.5 digit analog to digital converter. The IC includes internal circuitry for seven segment decoders, display drivers, reference voltage source and a clock. The power dissipation is less than 10mW and the display stability is very high. The working of this electronic circuit is very simple. The voltage to be measured is converted into a digital equivalent by the ADC inside the IC and then this digital equivalent is decoded to the seven segment format and then displayed. The ADC used in ICL7107 is dual slope type ADC. The process taking place inside our ADC can be stated as follows. For a fixed period of time the voltage to be measured is integrated to obtain a ramp at the output of the integrator. Then a known reference voltage of opposite polarity is applied to the input of the integrator and allowed to r...