Skip to main content

Test Beeper For Your Stereo


The test beeper generates a sinusoidal signal with a frequency of 1,000 Hz, a common test  frequency for audio amplifiers.  It consists of a classical Wien- Bridge oscillator (also known as  a Wien-Robinson oscillator). The network that determines the  frequency consists here of a series connection of a resistor and  capacitor (R1/C1) and a parallel connection (R2/C2), where  the values of the resistors and  capacitors  are  equal  to  each  other. This network behaves, at  the oscillator frequency (1 kHz  in this case), as two pure resistors. The opamp (IC1) ensures  that the attenuation of the net- work  (3  times)  is  compensated  for.  In  principle  a  gain  of  3 times should have been sufficient to sustain the oscillation,  but  that  is  in  theory.  Because  of tolerances in the values, the  amplification needs to be (automatically) adjusted.

 

Circuit diagram:

Test Beeper For Your Stereo circuit-Diagram

Test Beeper For Your Stereo circuit Diagram

 

Instead of an intelligent amplitude  controller  we  chose  for  a  somewhat simpler solution. With  P1, R3 and R4 you can adjust  the gain to the point that oscillation takes place. The range of P1 (±10%) is large enough the cover the tolerance range. To sustain  the oscillation, a gain of slightly  more than 3 times is required,  which  would,  however,  cause  the amplifier to clip (the ‘round-trip’ signal becomes increasingly  larger, after all). To prevent this  from happening, a resistor in se-ries with two anti-parallel diodes  (D1 and D2) are connected in  parallel  with  the  feedback  (P1  and R3). If the voltage increases to the point that the threshold  voltage of the diodes is exceed-ed, then these will slowly start to  conduct.

 

The consequence of this  is that the total resistance of the  feedback  is  reduced  and  with  that  also  the  amplitude  of  the  signal. So D1 and D2 provide a  stabilising function. The distortion of this simple oscillator, after adjustment of P1 and  an output voltage of 100 mV (P2  to  maximum)  is  around  0,1%.  You can adjust the amplitude of  the output signal with P2 as required for the application. The  circuit is powered from a 9-V battery. Because of the low current  consumption  of  only  2 mA  the  circuit will provide many hours  of service.

Author :Ton Giesberts  - Copyright : Elektor Electronics


Comments

Popular posts from this blog

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP ...

Digital Voltmeter Circuit with ICL7107

Description. The circuit given here is of a very useful and accurate digital voltmeter with LED display using the ICL7107 from Intersil. The ICL7107 is a high performance, low power, 3.5 digit analog to digital converter. The IC includes internal circuitry for seven segment decoders, display drivers, reference voltage source and a clock. The power dissipation is less than 10mW and the display stability is very high. The working of this electronic circuit is very simple. The voltage to be measured is converted into a digital equivalent by the ADC inside the IC and then this digital equivalent is decoded to the seven segment format and then displayed. The ADC used in ICL7107 is dual slope type ADC. The process taking place inside our ADC can be stated as follows. For a fixed period of time the voltage to be measured is integrated to obtain a ramp at the output of the integrator. Then a known reference voltage of opposite polarity is applied to the input of the integrator and allowed to r...

NXP TDA3629 LIGHT POSITION CONTROLLER ELECTRONIC DIAGRAM

NXP TDA3629 LIGHT POSITION CONTROLLER ELECTRONIC DIAGRAM schematic diagram of light position controller which is a monolithic integrated circuit often used in passenger cars. The potentiometer in the dashboard is used to define the light beam’s elevation of the car’s headlight to a state be the car driver.