Skip to main content

Simple Telephone Tapping Indicator


This simple circuit can indicate a misuse or tapping of Telephone line through a loud alarm. The circuit is too simple and can be easily assembled on a common PCB. Line voltage of Telephone lines is around 48 volts DC in the On hook state. When the handset is lifted, this voltage reduces to 12 volt DC. This change in voltage level is used to activate the circuit.When the switch S1 is closed, circuit becomes active and the telephone enters into the armed state.

The high volt DC from the telephone line passes through R1 and VR1 and bias T1 into conduction. As a result, the collector of T1 goes to ground potential to inhibit T2 from conduction. Buzzer and LED thus remain off. When the handset is lifted, the DC voltage from the telephone lines drops to 12 volts. This turns off T1 and T2 conducts. Buzzer beeps and LED lights indicating that the telephone is using.


Setting
Connect the circuit to Telephone lines using a telephone plug. The free socket of the telephone or Caller ID can be used. Close S1 and adjust VR1 till buzzer stops beeping. Lift the handset. Buzzer should sound. Otherwise, just adjust VR1 till buzzer beeps.

Comments

Popular posts from this blog

Mantis 9 1 CNC Mill

The Mantis 9.1 design is a radical departure from version 8 and earlier. Most notably, the part count has been almost halved! The current design has 13 parts, all of which can be made with a handsaw and a drill press. Also, I’ve traded away my alignment free exactly-constrained design for extra stiffness. Several unsuccessful attempts to eradicate the last of the slop in the Z axis on version 8 lead me back to the world of over-constrained parallel rods. My previous attempts at an over-constrained design (versions 1-5) all failed because I was unable to make the rods sufficiently parallel to avoid jamming. What to do? [ ]

25 Watt Audio Amplifier Circuits Diagram

25 Watt Audio Amplifier Circuits Diagram Parts: R1 ,R4 _________47K   1/4W Resistors R2____________ 4K7   1 /4W Resistor R3____________ 1K5   1 /4W Resistor R5__________390R    1/4W Resistor R6__________470R    1/4W Resistor R7___________33K    1/4W Resistor R8__________150K    1/4W Resistor R9___________15K    1/4W Resistor R10__________27R    1/4W Resistor R11_________500R    1/2W Trimmer Cermet R12 ,R13,R16 __10R    1/4W Resistors R14 ,R15 _____220R    1/4W Resistors R17___________8R2     2W Resistor R18____________R22    4W Resistor ( wirewound )   C1___________ 470nF   63V Polyester Capacitor C2___________ 330pF   63V Polystyrene Capacitor C3 ,C5 ________470µF   63V Electrolytic Capacitors C4 ,C6,C8,C11 _100nF   63V Polyester Capacitors C7___________100µ F   25V Electrolytic Capacitor C9____________ 10pF   63V Polys...

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...