Skip to main content

Electrical Noise and Interference


ELECTRICAL NOISE AND INTERFERENCE :

Definition of electrical noise
 
Noise, or interference, can be defined as undesirable electrical signals, which distort or interfere with an original (or desired) signal. Noise could be transient (temporary) or constant. Unpredictable transient noise is caused, for example, by lightning. Constant noise can be due to the predictable 50 or 60 Hz AC 'hum' from power circuits or harmonic multiples of power frequency close to the data communications cable. This unpredictability makes the design of a data communications system quite challenging.

Noise can be generated from within the system itself (internal noise) or from an outside source (external noise).
Examples of these types of noise are:

Internal noise

  • Thermal noise (due to electron movement within the electrical circuits)
  • Imperfections (in the electrical design). 
  • Shot noise is generated by individual electrons "jumping" across some sort of barrier potential as they travel through a conducting substance. Shot noise is proportional to the amount of electric current going through a conductor.
  • Thermal noise, also known as Johnson noise, is caused by the random motion of electrons due to thermal energy. As one might guess, this type of noise is proportional to conductor temperature.
  • Flicker noise, or 1/f noise, is characterized by a magnitude that is inversely proportional to frequency. Little is known about the origins of this type of noise, but it is proportional to the amount of DC current, just like shot noise, and so may be mitigated using the same controls.

External noise

  • Natural origins (electrostatic interference and electrical storms)
  • Electromagnetic interference (EMI) - from currents in cables
  • Radio frequency interference (RFI) - from radio systems radiating signals
  • Cross talk (from other cables separated by a small distance).

From a general point of view, there must be three contributing factors before an electrical noise problem can exist. These are:

  1. A source of electrical noise
  2. A mechanism coupling the source to the affected circuit
  3. A circuit conveying the sensitive communication signals.

Typical sources of noise are devices, which produce quick changes (spikes) in voltage or current or harmonics, such as:

  • Large electrical motors being switched on
  • Fluorescent lighting tubes
  • Solid-state converters or drive systems
  • Lightning strikes
  • High-voltage surges due to electrical faults
  • Welding equipment. 
 Electrical systems are prone to such noise due to various reasons. As discussed in the previous chapter, lightning and switching surges are two of these. These surges produce high but very short duration of distortions of the voltage wave. Another common example is 'notching', which appears in circuits using silicon-controlled rectifiers (power thyristors). The switching of these devices causes sharp inverted spikes during commutation (transfer of conduction from one phase arm to the next).Figure 1 shows the typical waveform with this type of disturbance.

 

Harmonics in supply system is yet another form of disturbance.

The following general principles are applicable for reducing the effects of electrical noise:

  • Physical segregation of noise sources from noise-sensitive equipment
  • Electrical segregation
  • Harmonic current control
  • Avoiding ground loops which are a major cause of noise propagation (including measures such as zero signal reference grid, explained later in this chapter)
  • Shielding/screening of noise sources and noise-susceptible equipment including use of shielded/twisted pair conductors.

Alternatives to Help Sort Out the Best Course of Action for Resolving Electrical Noise Interference from Motors and Drives That Affect Sensor Signals and HMI

  • Electrical noise interference from motors and drives is affecting our sensor signals and HMI too often.One solution suggested is to start using fiberoptic cable for signal transmission, but that's not cheap. Alternatively, there also are dozens of power filters, uninterruptible power supplies and other power conditioning devices. 
  • Separation between the low voltage control and high voltage power lines: If those lines need to cross, they should do so at 90° angles.Use shielded cables and/or shielded cable trays. It is important to note that simply using what is typically sold as shielded sensor cable could actually increase the problem, especially when using cables with M12 connectors. Most such cables do not connect the shield to the coupling nut and, as a result, do not provide a clean path to ground.
  • Provide for solid machine ground interconnections. This is a must when using shielded cables or the shield will serve to equalize the potential between the different machine sections.
  • Use ferrite chokes.
  • Reduce the length of the sensor cables. In this case the sensors are connected to field-mounted I/O modules that communicate over a network with the PLC.

Good Earth Ground

  • Make sure that all the equipment is grounded to a single point, also known as “star” point. This star point should go back to the power supply ground. This will help to reduce ground loop currents. In conjunction with this, use in-line toroid filters with the power supply lines to each piece of equipment. For sensors, use L-C feedthrough filters between the sensor and controllers or PLC. The filter frequency range should be DC to 50 MHz with attenuation of 30 dB or more. The filter ground must be connected to Earth ground.

Electrical Isolation Is the Answer

  •  To reduce the effect of electrical noise on signals controlling machinery and other equipment, a combination of two technologies prove to be the most effective. These technologies are optical coupling and inductive coupling.
  • An additional way isolation can be improved is effective wiring practices. Depending on length of sensor cabling run, voltage signals are easy to use but provide voltage drops when cable lengths exceed even a few feet and can be expensive if larger conductors are used.
NAYAN CHOURASIA
B.E. (Q-49)
naya

Comments

Popular posts from this blog

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588

Power Amplifier with voltage regulator 4 × 50 Watt TDA8588    The TDA8588 is a multiple voltage regulator combined with four independent audio power amplifiers configured in bridge tied load with diagnostic capability. The output voltages of all regulators except regulators 2 and 3 can be controlled via the I2C-bus. However, regulator 3 can be set to 0 V via the I2C-bus. The output voltage of regulator 2 (microcontroller supply) and the maximum output voltage of regulator 3 (mechanical digital and microcontroller supplies) can both be either 5 V or 3.3 V depending on the type number. The maximum output voltages of both regulators are fixed to avoid any risk of damaging the microcontroller that may occur during a disturbance of the I 2C-bus. The amplifier diagnostic functions give information about output offset, load, or short-circuit. Diagnostic functions are controlled via the I2C-bus. The TDA8588 is protected against short-circuit, over-temperature, open ground and open VP ...

Siemens LOGO PLC Ladder Programming Steps

Siemens LOGO PLC Ladder  Programming Steps  Following are Step by Step instruction to Program Siemens Logo PLC Siemens Logo PLC Click on “ Siemens LOGO ” Click on “ siemens rse ” Click on “ StartLOGOComfor t” Wait… You will find the work pad where you have to write FBD programme Use “menus” given at the top and bottom to develop a FBD programme. Find Tools toolbar, Standard toolbar, Menu bar and Status bar. Entering a New program : Click on “ File ”               “ New ”               Create a program using Toolbars and Function blocks (Constants, General and Special functions) • You can then place any of those functions on the drawing board simply by clicking on the drawing board in the desired position. The function on the extreme left is selected by default but you can select any of the others by clicking them with the mouse. • It is not necessary to position the objects precisely at this point. • To ...