Skip to main content

Mobile phone Circuits to Get Even smaller


Transceivers, appliances such as mobile phones that can send and receive messages, have become smaller and smaller over the last few years, but users are about to experience a new meaning in miniaturisation. 

Research at The Hong Kong University of Science & Technology (HKUST) has successfully combined a unique system architecture and new circuit design techniques to reduce them in size like never before. 
Principal Investigator Dr Howard Luong said the handset of a typical mobile phone today may contain between 150 and 300 separate electrical components.
His research group proposed and demonstrated circuit techniques that make it possible to combine many of these components to a single chip and therefore to significantly reduce the size of circuitry (see example in graphic). A US patent has been granted for one of the circuit techniques. 
 
The transformation applies to the CMOS (Complimentary Metal-Oxide Semiconductor) manufacturing process, which can produce integrated circuits and systems with the highest integration level at the lowest cost. Applying new techniques to the CMOS process, Dr Luongs research enables many “off-chip components to be combined to realize a system-on-chip. But, he said, “this integration created great challenges in circuit implementation.” Part of the research was to solve the problems by new circuit design techniques.
 
The system architecture and circuitry go hand in hand, he added. “They must both work, or neither will be useful.
The resulting design gives the highest component integration in the smallest chip area ever reported, said Dr Luong.
In his design, all off-chip components are fitted into a central chip measuring 36 mm with packaging, and 8mm without being packaged.
Dr Luong’s miniaturisation method means appliances will soon be made for even lower cost and lower power consumption in addition to being much smaller in size and lighter in weight.
With the lowering of cost, size and power, many new and interesting applications will become possible and practical,” he said.
Low-power wireless transceivers, for example, could be integrated into implanted devices such as heart pacemakers to wirelessly transmit and receive information between patients and doctors or monitoring systems.
Wearable mobile phones as small as wrist watches at an affordable price could also become a reality.

Auther
Principal Investigator
Dr Howard Luong

Comments

Popular posts from this blog

Mantis 9 1 CNC Mill

The Mantis 9.1 design is a radical departure from version 8 and earlier. Most notably, the part count has been almost halved! The current design has 13 parts, all of which can be made with a handsaw and a drill press. Also, I’ve traded away my alignment free exactly-constrained design for extra stiffness. Several unsuccessful attempts to eradicate the last of the slop in the Z axis on version 8 lead me back to the world of over-constrained parallel rods. My previous attempts at an over-constrained design (versions 1-5) all failed because I was unable to make the rods sufficiently parallel to avoid jamming. What to do? [ ]

25 Watt Audio Amplifier Circuits Diagram

25 Watt Audio Amplifier Circuits Diagram Parts: R1 ,R4 _________47K   1/4W Resistors R2____________ 4K7   1 /4W Resistor R3____________ 1K5   1 /4W Resistor R5__________390R    1/4W Resistor R6__________470R    1/4W Resistor R7___________33K    1/4W Resistor R8__________150K    1/4W Resistor R9___________15K    1/4W Resistor R10__________27R    1/4W Resistor R11_________500R    1/2W Trimmer Cermet R12 ,R13,R16 __10R    1/4W Resistors R14 ,R15 _____220R    1/4W Resistors R17___________8R2     2W Resistor R18____________R22    4W Resistor ( wirewound )   C1___________ 470nF   63V Polyester Capacitor C2___________ 330pF   63V Polystyrene Capacitor C3 ,C5 ________470µF   63V Electrolytic Capacitors C4 ,C6,C8,C11 _100nF   63V Polyester Capacitors C7___________100µ F   25V Electrolytic Capacitor C9____________ 10pF   63V Polys...

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal.   Electronic Extended Play Circuit Diagram The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included.  Connecting the spe...